



LEADER 
02083nma a2200433 c 4500 
001 
SPR047863862 
003 
DE601 
005 
20150325041017.0 
007 
cr uuuuuuuu 
008 
150315s2012 000 0 eng d 
024 
7 

a 10.1007/JHEP10(2012)057
2 doi

024 
8 

a JHEP10(2012)057

035 


a JHEP10(2012)057

040 


b ger
c GBVCP

041 
0 

a eng

100 
1 

a Alday, F.

245 
1 
0 
a The large N  limit of M2branes on Lens spaces
h Elektronische Ressource

300 


a OnlineRessource

500 


a A r X iv e P rint:1204.1280

520 


a We study the matrix model for N M2branes wrapping a Lens space$ L\left( {p,1} \right)={S^3}/{{\mathbb{Z}}_p} $. This arises from localization of the partition function of the ABJM theory, and has some novel features compared with the case of a threesphere, including a sum over flat connections and a potential that depends nontrivially on p. We study the matrix model both numerically and analytically in the large N limit, finding that a certain family of p flat connections give an equal dominant contribution. At large N we find the same eigenvalue distribution for all p, and show that the free energy is simply 1/p times the free energy on a threesphere, in agreement with gravity dual expectations.

611 
2 
7 
a OriginalPaper
2 gnd

650 

7 
a Supersymmetric gauge theory
2 gnd

650 

7 
a Gaugegravity correspondence
2 gnd

650 

7 
a ChernSimons Theories
2 gnd

650 

7 
a 1/N Expansion
2 gnd

689 
0 
0 
A f
a OriginalPaper

689 
0 

5 DE601

689 
1 
0 
A s
a Supersymmetric gauge theory

689 
1 
1 
A s
a Gaugegravity correspondence

689 
1 
2 
A s
a ChernSimons Theories

689 
1 
3 
A s
a 1/N Expansion

689 
1 

5 DE601

700 
1 

a Fluder, Martin

700 
1 

a Sparks, James

773 
0 
8 
i in
t Journal of High Energy Physics
d Berlin : Springer
g Vol. 2012, No. 10 (2012), p. 123
q 2012:10<123
w (DE601)SPR047830530
x 10298479

856 
4 
1 
u http://dx.doi.org/10.1007/JHEP10(2012)057
3 Volltext

912 


a GBV_SPRINGER

951 


a AR

952 


d 2012
j 2012
e 10
c 10
h 123
