On the Effect of Anisotropy on the Stability of Convection in Rotating Porous Media

We investigate natural convection in an anisotropic porous layer subjected to centrifugal body forces. The Darcy model (including centrifugal and permeability anisotropy effects) is used to describe the flow and a modified energy equation (including the effects of thermal anisotropy) is used in the...

Full description

Bibliographic Details
Published in:Transport in Porous Media, Vol. 64, No. 3 (2006), p. 413-422
Main Author: Govender, Saneshan
Format: electronic Article
Language:English
ISSN:1573-1634
Physical Description:Online-Ressource
DOI:10.1007/s11242-005-5479-7
Subjects:
QR Code: Show QR Code
LEADER 01983nma a2200397 c 4500
001 SPR036849251
003 DE-601
005 20150323154430.0
007 cr uuu---uuuuu
008 150314s2006 000 0 eng d
024 7 |a 10.1007/s11242-005-5479-7  |2 doi 
024 8 |a s11242-005-5479-7 
035 |a s11242-005-5479-7 
040 |b ger  |c GBVCP 
041 0 |a eng 
100 1 |a Govender, Saneshan 
245 1 0 |a On the Effect of Anisotropy on the Stability of Convection in Rotating Porous Media  |h Elektronische Ressource 
300 |a Online-Ressource 
520 |a We investigate natural convection in an anisotropic porous layer subjected to centrifugal body forces. The Darcy model (including centrifugal and permeability anisotropy effects) is used to describe the flow and a modified energy equation (including the effects of thermal anisotropy) is used in the current analysis. The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection in the presence of thermal and mechanical anisotropy. It is found that the convection is stabilized when the thermal anisotropy ratio (which is a function of the thermal and mechanical anisotropy parameters) is increased in magnitude. 
611 2 7 |a OriginalPaper  |2 gnd 
650 7 |a mechanical anisotropy  |2 gnd 
650 7 |a thermal anisotropy  |2 gnd 
650 7 |a rotation  |2 gnd 
650 7 |a centrifugal Rayleigh number  |2 gnd 
689 0 0 |A f  |a OriginalPaper 
689 0 |5 DE-601 
689 1 0 |A s  |a mechanical anisotropy 
689 1 1 |A s  |a thermal anisotropy 
689 1 2 |A s  |a rotation 
689 1 3 |A s  |a centrifugal Rayleigh number 
689 1 |5 DE-601 
773 0 8 |i in  |t Transport in Porous Media  |d Dordrecht [u.a.] : Springer Science + Business Media B.V  |g Vol. 64, No. 3 (2006), p. 413-422  |q 64:3<413-422  |w (DE-601)SPR036835749  |x 1573-1634 
856 4 1 |u http://dx.doi.org/10.1007/s11242-005-5479-7  |3 Volltext 
912 |a GBV_SPRINGER 
951 |a AR 
952 |d 64  |j 2006  |e 3  |c 09  |h 413-422