Magnetic anisotropy of hematite natural crystals: high field experiments

Hematite is one of the most important carriers of remanent magnetization in natural samples. Its strong magnetocrystalline anisotropy makes it difficult to determine one single value for the magnetic anisotropy constant and other magnetic properties. In particular, the anisotropy of hematite within...

Full description

Bibliographic Details
Published in:International Journal of Earth Sciences : GR Geologische Rundschau, Vol. 101, No. 3 (2012), p. 637-647
Main Author: Martin-Hernandez, Fatima
Other Involved Persons: Guerrero-Suárez, Sara
Format: electronic Article
Language:English
ISSN:1437-3262
Physical Description:Online-Ressource
DOI:10.1007/s00531-011-0665-z
Subjects:
QR Code: Show QR Code
LEADER 02605nma a2200457 c 4500
001 SPR018607004
003 DE-601
005 20150324122340.0
007 cr uuu---uuuuu
008 150313s2012 000 0 eng d
024 7 |a 10.1007/s00531-011-0665-z  |2 doi 
024 8 |a s00531-011-0665-z 
035 |a s00531-011-0665-z 
040 |b ger  |c GBVCP 
041 0 |a eng 
100 1 |a Martin-Hernandez, Fatima 
245 1 0 |a Magnetic anisotropy of hematite natural crystals: high field experiments  |h Elektronische Ressource 
300 |a Online-Ressource 
520 |a Hematite is one of the most important carriers of remanent magnetization in natural samples. Its strong magnetocrystalline anisotropy makes it difficult to determine one single value for the magnetic anisotropy constant and other magnetic properties. In particular, the anisotropy of hematite within its basal plane is controversial because an assumed triaxial anisotropy compatible with the crystallographic structure has not always been detected. This study presents a comparative analysis of rock magnetic properties, compositional analysis and determination of the magnetic anisotropy constant. Different models with anisotropy constant within the basal plane ranging from 0 to 13 (J m−3) are considered in the evaluation of the factors that control the presence or absence of a triaxial anisotropy. A linear relationship between saturation magnetization ( M s) and coercitivity ( B c) in measurements at increasing temperatures is observed in samples where anisotropy is either uniaxial or biaxial while those with significant triaxial anisotropies have a power–law relationship between M s and B c. 
611 2 7 |a OriginalPaper  |2 gnd 
650 7 |a Hematite  |2 gnd 
650 7 |a Magnetic anisotropy  |2 gnd 
650 7 |a Anisotropy constant  |2 gnd 
650 7 |a Rock magnetism  |2 gnd 
650 7 |a Magnetic properties  |2 gnd 
650 7 |a High-field methods  |2 gnd 
689 0 0 |A f  |a OriginalPaper 
689 0 |5 DE-601 
689 1 0 |A s  |a Hematite 
689 1 1 |A s  |a Magnetic anisotropy 
689 1 2 |A s  |a Anisotropy constant 
689 1 3 |A s  |a Rock magnetism 
689 1 4 |A s  |a Magnetic properties 
689 1 5 |A s  |a High-field methods 
689 1 |5 DE-601 
700 1 |a Guerrero-Suárez, Sara 
773 0 8 |i in  |t International Journal of Earth Sciences : GR Geologische Rundschau  |d Berlin : Springer  |g Vol. 101, No. 3 (2012), p. 637-647  |q 101:3<637-647  |w (DE-601)SPR018544479  |x 1437-3262 
856 4 1 |u http://dx.doi.org/10.1007/s00531-011-0665-z  |3 Volltext 
912 |a GBV_SPRINGER 
951 |a AR 
952 |d 101  |j 2012  |e 3  |c 04  |h 637-647