Union bound for quantum information processing

In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter...

Full description

Bibliographic Details
Published in:Proceedings. Mathematical, physical, and engineering sciences, Vol. 475, No. 2221 (2019), p. 20180612
Main Author: Khabbazi Oskouei, Samad (Author)
Other Involved Persons: Mancini, Stefano ; Wilde, Mark M
Format: electronic Article
Language:English
ISSN:1364-5021
Item Description:Date Revised 19.02.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
Copyright: From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine
Physical Description:Online-Ressource
DOI:10.1098/rspa.2018.0612
Subjects:
QR Code: Show QR Code
LEADER 02791nma a2200445 c 4500
001 NLM294386173
003 DE-601
005 20190224013109.0
007 cr uuu---uuuuu
008 190218s2019 000 0 eng d
024 7 |a 10.1098/rspa.2018.0612  |2 doi 
028 5 2 |a pubmed19n1060.xml 
035 |a (DE-599)NLM30760963 
040 |b ger  |c GBVCP 
041 0 |a eng 
100 1 |a Khabbazi Oskouei, Samad  |e verfasserin  |4 aut 
245 1 0 |a Union bound for quantum information processing  |h Elektronische Ressource 
300 |a Online-Ressource 
500 |a Date Revised 19.02.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
500 |a Copyright: From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine 
520 |a In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi-Nagaoka inequality (Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory 49, 1753-1768. (doi:10.1109/TIT.2003.813556)), used often in quantum information theory when analysing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, Pythagoras' theorem, and the Cauchy-Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel's second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms and quantum complexity theory 
611 2 7 |a Journal Article  |2 gnd 
655 7 |a quantum communication  |2 gnd 
655 7 |a quantum union bound  |2 gnd 
655 7 |a sequential decoding  |2 gnd 
689 0 0 |A f  |a Journal Article 
689 0 |5 DE-601 
689 1 0 |a quantum communication 
689 1 1 |a quantum union bound 
689 1 2 |a sequential decoding 
689 1 |5 DE-601 
700 1 |a Mancini, Stefano  |e verfasserin  |4 aut 
700 1 |a Wilde, Mark M  |e verfasserin  |4 aut 
773 0 8 |i in  |t Proceedings. Mathematical, physical, and engineering sciences  |g Vol. 475, No. 2221 (2019), p. 20180612  |q 475:2221<20180612  |w (DE-601)NLM098272578  |x 1364-5021 
856 4 1 |u http://dx.doi.org/10.1098/rspa.2018.0612  |3 Volltext 
912 |a GBV_NLM 
951 |a AR 
952 |d 475  |j 2019  |e 2221  |c 01  |h 20180612