Chaos and control in mass-action binding of endogenous compounds

Endogenous compounds, such as hormones and neurotransmitters, interact with cellular receptors in controlled reactions governed by the mass-action law. Autoreceptors, a subset of the receptor pool, when activated by the endogenous ligand, result in a negative feedback that reduces the further releas...

Full description

Bibliographic Details
Published in:Annals of biomedical engineering, Vol. 22, No. 2 (1994), p. 153-61
Main Author: Tallarida, R J
Other Involved Persons: Freeman, K A
Format: Article
Language:English
ISSN:1573-9686
Item Description:Date Completed 29.09.1994
Date Revised 09.09.2019
published: Print
Citation Status MEDLINE
Copyright: From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine
Subjects:
QR Code: Show QR Code
LEADER 02717naa a2200553 c 4500
001 NLM078910226
003 DE-601
005 20190922022830.0
008 180202s1994 000 0 eng d
028 5 2 |a pubmed19n1455.xml 
035 |a (DE-599)NLM7915503 
040 |b ger  |c GBVCP 
041 0 |a eng 
100 1 |a Tallarida, R J 
245 1 0 |a Chaos and control in mass-action binding of endogenous compounds 
500 |a Date Completed 29.09.1994 
500 |a Date Revised 09.09.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
500 |a Copyright: From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine 
520 |a Endogenous compounds, such as hormones and neurotransmitters, interact with cellular receptors in controlled reactions governed by the mass-action law. Autoreceptors, a subset of the receptor pool, when activated by the endogenous ligand, result in a negative feedback that reduces the further release of ligand. This paper discusses and illustrates this control system when the concentrations (free and bound) are near or slightly beyond the limits of effective feedback control. Specifically, a forced periodic input function, simulating periodic release of the ligand, is used in the simulation of this controlled binding reaction in which a parameter representing the upper limit of control is varied. The solution of the system differential equations, representing free and bound ligand, is shown to pass from periodic to chaotic as the parameter is varied 
611 2 7 |a Journal Article  |2 gnd 
611 2 7 |a Research Support, Non-U.S. Gov't  |2 gnd 
653 2 |a *Computer Simulation  |6 D003198 
653 2 |a Feedback  |6 D005246  |a physiology  |6 Q000502 
653 2 |a Hormones  |6 D006728  |a metabolism  |6 Q000378 
653 2 |a *Ligands  |6 D008024 
653 2 |a Models, Biological  |6 D008954 
653 2 |a Neurotransmitter Agents  |6 D018377  |a metabolism  |6 Q000378 
653 2 |a *Nonlinear Dynamics  |6 D017711 
653 2 |a Periodicity  |6 D010507 
653 2 |a Receptors, Cell Surface  |6 D011956  |a *metabolism  |6 Q000378 
655 7 |a Hormones  |2 gnd 
655 7 |a Ligands  |2 gnd 
655 7 |a Neurotransmitter Agents  |2 gnd 
655 7 |a Receptors, Cell Surface  |2 gnd 
689 0 0 |A f  |a Journal Article 
689 0 1 |A f  |a Research Support, Non-U.S. Gov't 
689 0 |5 DE-601 
689 2 0 |a Hormones 
689 2 1 |a Ligands 
689 2 2 |a Neurotransmitter Agents 
689 2 3 |a Receptors, Cell Surface 
689 2 |5 DE-601 
700 1 |a Freeman, K A 
773 0 8 |i in  |t Annals of biomedical engineering  |g Vol. 22, No. 2 (1994), p. 153-61  |q 22:2<153-61  |w (DE-601)NLM000371769  |x 1573-9686 
912 |a GBV_NLM 
951 |a AR 
952 |d 22  |j 1994  |e 2  |h 153-61