Conditionals Right and Left: Probabilities for the Whole Family

The fact that the standard probabilistic calculus does not define probabilities for sentences with embedded conditionals is a fundamental problem for the probabilistic theory of conditionals. Several authors have explored ways to assign probabilities to such sentences, but those proposals have come...

Full description

Bibliographic Details
Published in:Journal of Philosophical Logic, Vol. 38, No. 1 (2009), p. 1-53
Main Author: Kaufmann, Stefan
Format: electronic Article
Language:English
ISSN:1573-0433
Item Description:Copyright: Copyright 2009 Springer Science + Business Media B.V.
Physical Description:Online-Ressource
Subjects:
Other Editions:Show all 2 Editions
QR Code: Show QR Code
LEADER 02005nma a2200409 c 4500
001 JST051081474
003 DE-601
005 20180530005352.0
007 cr uuu---uuuuu
008 150324s2009 000 0 eng d
024 8 |a 40344052 
024 8 |a 10.1007/s10992-008-9088-0 
035 |a 40344052 
040 |b ger  |c GBVCP 
041 0 |a eng 
100 1 |a Kaufmann, Stefan 
245 1 0 |a Conditionals Right and Left: Probabilities for the Whole Family  |h Elektronische Ressource 
300 |a Online-Ressource 
500 |a Copyright: Copyright 2009 Springer Science + Business Media B.V. 
520 |a The fact that the standard probabilistic calculus does not define probabilities for sentences with embedded conditionals is a fundamental problem for the probabilistic theory of conditionals. Several authors have explored ways to assign probabilities to such sentences, but those proposals have come under criticism for making counterintuitive predictions. This paper examines the source of the problematic predictions and proposes an amendment which corrects them in a principled way. The account brings intuitions about counterfactual conditionals to bear on the interpretation of indicatives and relies on the notion of causal (in) dependence. 
611 2 7 |a research-article  |2 gnd 
650 7 |a Standard probabilistic calculus  |2 gnd 
650 7 |a Embedded conditionals  |2 gnd 
650 7 |a Probabilistic theory of conditionals  |2 gnd 
650 7 |a Causal independence  |2 gnd 
689 0 0 |A f  |a research-article 
689 0 |5 DE-601 
689 1 0 |A s  |a Standard probabilistic calculus 
689 1 1 |A s  |a Embedded conditionals 
689 1 2 |A s  |a Probabilistic theory of conditionals 
689 1 3 |A s  |a Causal independence 
689 1 |5 DE-601 
773 0 8 |i in  |t Journal of Philosophical Logic  |g Vol. 38, No. 1 (2009), p. 1-53  |q 38:1<1-53  |w (DE-601)JST051075539  |x 1573-0433 
856 4 1 |u https://www.jstor.org/stable/40344052  |3 Volltext 
912 |a GBV_JSTOR 
951 |a AR 
952 |d 38  |j 2009  |e 1  |h 1-53