Characterizing common cause closedness of quantum probability theories

We prove new results on common cause closedness of quantum probability spaces, where by a quantum probability space is meant the projection lattice of a non-commutative von Neumann algebra together with a countably additive probability measure on the lattice. Common cause closedness is the feature t...

Full description

Bibliographic Details
Published in:Studies in history and philosophy of science, Vol. 52 (2015), p. 234-241
Main Author: Kitajima, Yuichiro
Other Involved Persons: Rédei, Miklós
Format: electronic Article
Language:English
Physical Description:Online-Ressource
DOI:10.1016/j.shpsb.2015.08.003
QR Code: Show QR Code
LEADER 02119nma a2200325 c 4500
001 ELV024494755
003 DE-601
005 20181115081845.0
007 cr uuu---uuuuu
008 180603s2015 000 0 eng d
016 7 |a 1500760-1  |2 DE-600 
024 7 |a 10.1016/j.shpsb.2015.08.003  |2 doi 
028 5 2 |a GBVA2015019000014.pica 
035 |a S1355-2198(15)00064-7 
040 |b ger  |c GBVCP 
041 0 |a eng 
082 0 0 |a 100 
082 0 9 |a 100 
082 0 9 |a 900 
100 1 |a Kitajima, Yuichiro 
245 1 0 |a Characterizing common cause closedness of quantum probability theories  |h Elektronische Ressource 
300 |a Online-Ressource 
520 |a We prove new results on common cause closedness of quantum probability spaces, where by a quantum probability space is meant the projection lattice of a non-commutative von Neumann algebra together with a countably additive probability measure on the lattice. Common cause closedness is the feature that for every correlation between a pair of commuting projections there exists in the lattice a third projection commuting with both of the correlated projections and which is a Reichenbachian common cause of the correlation. The main result we prove is that a quantum probability space is common cause closed if and only if it has at most one measure theoretic atom. This result improves earlier ones published in Gyenis and Rédei (2014). The result is discussed from the perspective of status of the Common Cause Principle. Open problems on common cause closedness of general probability spaces ( L , ϕ ) are formulated, where L is an orthomodular bounded lattice and ϕ is a probability measure on L . 
700 1 |a Rédei, Miklós 
773 0 8 |i In  |t Studies in history and philosophy of science  |d Amsterdam [u.a.] : Elsevier Science  |g Vol. 52 (2015), p. 234-241  |q 52<234-241  |w (DE-601)ELV014391791  |w S1355-2198(15)X0005-0 
856 4 1 |u https://doi.org/10.1016/j.shpsb.2015.08.003  |3 Volltext 
912 |a GBV_ELV 
950 |a Reichenbachian common cause  |a Orthomodular lattices  |a Common Cause Principle  |2 Elsevier 
951 |a AR 
952 |d 52  |j 2015  |h 234-241  |g 8