Advanced array signal processing algorithms for multi-dimensional parameter estimation

Die hochauflösende Parameterschätzung für mehrdimensionale Signale findet Anwendung in vielen Bereichen der Signalverarbeitung in Mehrantennensystemen. Zu den Anwendungsgebieten zählen beispielsweise Radar, die Mobilkommunikation, die Kanalschätzung in multiple-input multiple-output (MIMO)-Systemen...

Full description

Bibliographic Details
Main Author: Steinwandt, Jens (Author)
Other Involved Persons: Haardt, Martin (Degree supervisor) ; Pesavento, Marius (Other) ; Vorobyov, Sergiy A. (Other) ; Technische Universität Ilmenau
Format: eBook
Language:English
Published: Ilmenau : Universitätsbibliothek 30.11.2018
Item Description:Das Erscheinungsdatum ist der Tag der Verteidigung
Physical Description:1 Online-Ressource (xx, 389 Seiten) Diagramme (teilweise farbig)
Format:Systemvoraussetzung: Acrobat reader.
Subjects:
Local Subject Headings:
QR Code: Show QR Code
Description:
  • Die hochauflösende Parameterschätzung für mehrdimensionale Signale findet Anwendung in vielen Bereichen der Signalverarbeitung in Mehrantennensystemen. Zu den Anwendungsgebieten zählen beispielsweise Radar, die Mobilkommunikation, die Kanalschätzung in multiple-input multiple-output (MIMO)-Systemen und bildgebende Verfahren in der Biosignalverarbeitung. In letzter Zeit sind eine Vielzahl von Algorithmen zur Parameterschätzung entwickelt worden, deren Schätzgenauigkeit durch eine analytische Beschreibung der Leistungsfähigkeit objektiv bewertet werden kann. Eine verbreitete Methode zur Verbesserung der Schätzgenauigkeit von Parameterschätzverfahren ist die Ausnutzung von Vorwissen bezüglich der Signalstruktur. In dieser Arbeit werden mehrdimensionale ESPRIT-Verfahren als Beispiel für Unterraum-basierte Verfahren entwickelt und analysiert, die explizit die mehrdimensionale Signalstruktur mittels Tensor-Signalverarbeitung ausnutzt und die statistischen Eigenschaften von nicht-zirkulären Signalen einbezieht. Weiterhin werden neuartige auf Signalrekonstruktion basierende Algorithmen vorgestellt, die die nicht-zirkuläre Signalstruktur bei der Rekonstruktion ausnutzen. Die vorgestellten Verfahren ermöglichen eine deutlich verbesserte Schätzgüte und verdoppeln die Anzahl der auflösbaren Signale. Die Vielzahl der Forschungsbeiträge in dieser Arbeit setzt sich aus verschiedenen Teilen zusammen. Im ersten Teil wird die analytische Beschreibung der Leistungsfähigkeit von Matrix-basierten und Tensor-basierten ESPRIT-Algorithmen betrachtet. Die Tensor-basierten Verfahren nutzen explizit die mehrdimensionale Struktur der Daten aus. Es werden für beide Algorithmenarten vereinfachte analytische Ausdrücke für den mittleren quadratischen Schätzfehler für zwei Signalquellen hergeleitet, die lediglich von den physikalischen Parametern, wie zum Beispiel die Anzahl der Antennenelemente, das Signal-zu-Rausch-Verhältnis, oder die Anzahl der Messungen, abhängen. Ein Vergleich dieser Ausdrücke ermöglicht die Berechnung einfacher Ausdrücke für den Schätzgenauigkeitsgewinn durch den forward-backward averaging (FBA)-Vorverarbeitungsschritt und die Tensor-Signalverarbeitung, die die analytische Abhängigkeit von den physikalischen Parametern enthalten. Im zweiten Teil entwickeln wir einen neuartigen general least squares (GLS)-Ansatz zur Lösung der Verschiebungs-Invarianz-Gleichung, die die Grundlage der ESPRIT-Algorithmen darstellt. Der neue Lösungsansatz berücksichtigt die statistische Beschreibung des Fehlers bei der Unterraumschätzung durch dessen Kovarianzmatrix und ermöglicht unter bestimmten Annahmen eine optimale Lösung der Invarianz-Gleichung. Mittels einer Performanzanalyse der GLS-basierten ESPRIT-Verfahren und der Vereinfachung der analytischen Ausdrücke für den Schätzfehler für eine Signalquelle und zwei zeitlich unkorrelierte Signalquellen wird gezeigt, dass die Cramer-Rao-Schranke, eine untere Schranke für die Varianz eines Schätzers, erreicht werden kann. Im nächsten Teil werden Matrix-basierte und Tensor-basierte ESPRIT-Algorithmen für nicht-zirkuläre Signalquellen vorgestellt. Unter Ausnutzung der Signalstruktur gelingt es, die Schätzgenauigkeit zu erhöhen und die doppelte Anzahl an Quellen aufzulösen. Dabei ermöglichen die vorgeschlagenen Tensor-ESPRIT-Verfahren sogar die gleichzeitige Ausnutzung der mehrdimensionalen Signalstruktur und der nicht-zirkuläre Signalstruktur. Die Leistungsfähigkeit dieser Verfahren wird erneut durch eine analytische Beschreibung objektiv bewertet und Spezialfälle für eine und zwei Quellen betrachtet. Es zeigt sich, dass für eine Quelle keinerlei Gewinn durch die nicht-zirkuläre Struktur erzielen lässt. Für zwei nicht-zirkuläre Quellen werden vereinfachte Ausdrücke für den Gewinn sowohl im Matrixfall also auch im Tensorfall hergeleitet und die Abhängigkeit der physikalischen Parameter analysiert. Sind die Signale stark korreliert oder ist die Anzahl der Messdaten sehr gering, kann der spatial smoothing-Vorverarbeitungsschritt mit den verbesserten ESPRIT-Verfahren kombiniert werden. Anhand der Performanzanalyse wird die Anzahl der Mittellungen für das spatial smoothing-Verfahren analytisch für eine Quelle bestimmt, die den Schätzfehler minimiert. Der nächste Teil befasst sich mit einer vergleichsweise neuen Klasse von Parameterschätzverfahren, die auf der Rekonstruktion überlagerter dünnbesetzter Signale basiert. Als Vorteil gegenüber den Algorithmen, die eine Signalunterraumschätzung voraussetzen, sind die Rekonstruktionsverfahren verhältnismäßig robust im Falle einer geringen Anzahl zeitlicher Messungen oder einer starken Korrelation der Signale. In diesem Teil der vorliegenden Arbeit werden drei solcher Verfahren entwickelt, die bei der Rekonstruktion zusätzlich die nicht-zirkuläre Signalstruktur ausnutzen. Dadurch kann auch für diese Art von Verfahren eine höhere Schätzgenauigkeit erreicht werden und eine höhere Anzahl an Signalen rekonstruiert werden. Im letzten Kapitel der Arbeit wird schließlich die Cramer-Rao-Schranke für mehrdimensionale nicht-zirkuläre Signale hergeleitet. Sie stellt eine untere Schranke für den Schätzfehler aller Algorithmen dar, die speziell für die Ausnutzung dieser Signalstruktur entwickelt wurden. Im Vergleich zur bekannten Cramer-Rao-Schranke für beliebige Signale, zeigt sich, dass im Fall von zeitlich kohärenten Signalen, für einen Messvektor oder für eine Quelle, beide Schranken äquivalent sind. In diesen Fällen kann daher keine Verbesserung der Schätzgüte erzielt werden. Zusätzlich wird die Cramer-Rao-Schranke für zwei benachbarte nicht-zirkuläre Signalquellen vereinfacht und der maximal mögliche Gewinn in Abhängigkeit der physikalischen Parameter analytisch ermittelt. Dieser Ausdruck gilt als Maßstab für den erzielbaren Gewinn aller Parameterschätzverfahren für zwei nicht-zirkuläre Signalquellen.
Regensburger Classification System:
    Detailed View Regensburger Classification System
    ZN 6040